【十年中国风】“舞”动异域,天涯相约民族风******
中新网北京10月2日电题:【十年中国风】“舞”动异域,天涯相约民族风
记者 邢蕊
提到广场舞,你脑海中会浮现出什么场景?是否是一群或烫着卷发、戴着墨镜,或身披彩色丝巾,在公园、广场伴着音乐起舞的大爷大妈们?
广场舞是一项成本低廉、简单易学且颇具社交属性的健身娱乐方式。一份早年间的行业报告显示,中国广场舞人口已近一亿。随着十年间国内外交流的脚步密集,“广场舞大妈”们,也越来越多地吸引世界目光。
“来自东方的神秘力量”
英国小哥三秒,至今都对此记忆犹新。
三秒住在英国谢菲尔德。他是中国传统文化的狂热爱好者,也是中国女婿。2019年,他和媳妇回中国探亲,在游览大好河山,品尝各式美食之余,同样令他难忘的,还有随处可见的“广场舞大妈”。
他说,自己想不通到底是怎样一种魔力,可以让互不相识的人们,在同一时间、同一地点,整齐划一地排列在一起起舞?这上头的背景音和魔性的小步伐,又是哪位节奏大师的手笔?
当他向妻子表达心中迷惑,却见对方煞有其事地笑道:“这是来自东方的神秘力量。”
这股“神秘的东方力量”正有席卷全球之势。从巴黎卢浮宫、俄罗斯红场到纽约时代广场,十年间都曾留下国人翩迁舞动的身影。
2014年,一曲《最炫民族风》响彻纽约时代广场上空,100位“中国大妈”在异国他乡的街头跟随节拍起舞,由内而外散发着自信的气场。
这是纽约中华歌舞团参与的一次快闪活动,团长冯洁至今都对当时的场面记忆犹新:“跳完以后,我们挥舞着100面五星红旗,一起合唱《我的中国心》,场面十分震撼。”
资料图:2013年1月21日,美国宾夕法尼亚大街上参加游行的华人民间舞蹈团。“神曲”背后的自信身影
当一群群东方面孔在异域高光中随性而舞,求同存异、兼容并包而又活泼豁达的中国文化特质,正跃动着勃勃生机。
从身边巷陌到异国他乡,随处可见的广场舞成为国人追求健康生活方式和展现向上精神面貌的注脚。在这背后,是一份份对美好生活的渴望,是飞速崛起的国家为普通百姓带来的幸福感和自信心。
在北京大学国家体育产业研究基地秘书长何文义看来,广场舞兼具时尚文化和体育文化属性。“广场舞的舞蹈和音乐都在不断推陈出新,受众囊括了各个年龄段,甚至包括有舞蹈功底的专业人士。当优秀人才进入这一领域,广场舞很可能从‘土文化’变成雅文化。”
何文义认为,广场舞热潮所体现出的,正是普通老百姓享受美好生活的直接过程。而在国外街头起舞的“中国大妈”,不仅是文化自信的体现,在某种意义上也是中国“文化输出”的一种形式。
来自英国的三秒眉飞色舞地告诉记者,自己看广场舞看到兴起时,也会情不自禁地加入其中,快乐得像个二十多岁的“小陀螺”。
资料图:2017年12月31日,2017“你好大妈”全国广场舞总决赛在美丽的云南西双版纳举办。陈春光 摄民族的,也是世界的
在国外生活数十年的冯洁,为了庆祝国庆60周年,于2009年创立了纽约中华歌舞团。13年时间里,冯洁和她的歌舞团一直致力于让优美的中国艺术在美国落地生根。
2015年梅西感恩节大游行,纽约中华歌舞团受邀参加。她们以侗族音乐为伴奏,编排出了一套动作简单,却颇具少数民族风情的广场舞。当身穿民族服饰的队伍走上街头,围观人群向着游行队伍高呼:“China,你好。”那一刻,走在队伍里的她和许多演员们热泪盈眶,身为华人的自豪感油然而生。
旅美20余年间,冯洁曾在美国朱莉雅音乐学院演奏并讲座过多部中国民乐作品、出版过琵琶独奏专辑,也曾自2009年起创办“纽约国庆晚会”、在大量中华艺术活动中担任节目策划人及总导演、艺术总监,还曾将来自辽宁芭蕾舞团自排的《花木兰》等多部晚会搬上美国主流舞台演出,以实际行动搭建中美文化桥梁,近距离向美国人民和华夏子孙讲述中国故事。
“我们中国的优秀文化还有很多很多,歌剧、芭蕾舞、交响乐……兼容并包,海纳百川。”她说,“这些来自中国的艺术之美,每每都会令当地观众大为赞叹。”
2015年梅西感恩节大游行现场。受访者供图。当中国风与西方世界交融碰撞,无论是“阳春白雪”的艺术表演,还是颇接地气的民间健身,都在润物无声地讲述着一个个中国故事,将兼具传统色彩和时代意蕴的中华文化推向国际舞台。而每一个故事,无不记录着优秀中华儿女的努力与拼搏。
“在美国,中国文化扮演着非常重要的角色。每次有多元文化交流活动,我们一定是最具亮点、最不可缺少被邀请的。”冯洁动情地说。而她语气中满满流露出的,是对中华文化坚定地自豪和自信。
把科技穿在身上,既有温度也有风度****** 仿造鹅绒、碳纳米管加热膜、人体红外反射材料…… 把科技穿在身上,既有温度也有风度 在刚刚过去的春节假期,受寒潮天气影响,全国部分地区气温大幅下降,处于“速冻”模式中。 来自中央气象台的信息,节日期间,我国东北、华北部分地区,气温创今冬新低,黑龙江省漠河市最低温度甚至跌至零下53摄氏度。 为了防寒,连不少“要风度、不要温度”的年轻人,都穿上了厚实的外套。 不过,想御寒保暖,不必非要把自己裹成“粽子”。如今,用在冬衣上的“黑科技”能够帮助人们“既有风度、也有温度”。 “人体热量的散失是由于热传递造成的,热传递有3种基本方式:传导、对流和辐射。”天津工业大学纺织科学与工程学院高级工程师、博士生导师夏兆鹏在接受科技日报记者采访时介绍道,为了达到保温效果,在设计上冬季防寒衣物要尽一切可能减少热量经由这3种途径流失,冬季保暖材料及保暖服装也都是围绕着这一原理进行研发和设计的。 仿造鹅绒: 即使被浸湿也能实现保暖效果 “冬天人体与外部低温环境间存在巨大温差,这就造成热传导,即热量会从温度高的地方传导到温度低的地方。如果在衣服中加入低导热系数的高蓬松保暖填充物,就可以阻止热传导,进而减少人体热量散失,达到保暖的目的。”夏兆鹏介绍道,这类保暖填充物主要起阻隔热传导的作用,目前比较常见的天然材料有棉、毛、羽绒等,比较常见的化学纤维材料有中空涤纶、喷胶棉等。 与传统保暖填充材料相比,近年来出现了一些新型保暖填充材料,其中具有代表性的就是仿鹅绒结构高保暖絮片。这种填充材料不仅保暖性强、轻便,而且在潮湿的环境下依旧可以持续保暖。在2022年北京冬季奥运会上,中国运动员的防寒服中就用这种仿鹅绒结构高保暖絮片作为填充材料,其在完全浸湿的条件下仍然能够达到98%的保暖率。 “仿鹅绒结构高保暖絮片的主要成分是与鹅绒纤维直径长度相差不大的仿造鹅绒,同时混入远红外涤纶和热熔涤纶。”夏兆鹏解释,其中仿造鹅绒以中空涤纶和Y形涤纶为主体,这两种涤纶可以最大限度地储存静止空气,而静止空气可以较好地保存热量。此外,即使是在被水浸湿的情况下,中空涤纶和Y形涤纶依然可以储存一定的静止空气。 仿鹅绒结构高保暖絮片能够克服天然鹅绒显臃肿、有异味、易跑绒和价格高等缺点,同时具有超轻、超薄、湿态保暖、高蓬松度等特点,而且洗涤后回弹性好、不缩水、保暖率不降低。 碳纳米管加热膜: 通电即发热,温度可调控 采用加热材料制作的电热服是国内外研究最多的冬季服装之一。 “常见的加热材料有镍铬加热丝、复合加热丝、碳纤维加热丝、碳纳米管加热膜等,这些材料被内置于衣服中制成电热服,当电热服连上充电设备后,电流经过衣服内部的加热材料就会产生热量,仿佛把电热毯披在身上。”夏兆鹏介绍,除此之外,该类衣服还内置了传感器,通过蓝牙即可实现对衣服的智能控温,用户只需要下载一个App,就可以用手机随时调整衣服的温度。 其中,碳纳米管加热膜作为控温加热系统中的重要元件,具有非常好的应用前景。“碳纳米管加热膜可以反复水洗,耐弯折次数达到10万次以上,而且薄膜厚度约为几十微米,具有非常好的柔性,发热效率大于65%。”夏兆鹏补充道。 除此之外,价格相对便宜的金属丝线性加热元件,如镍铬加热丝、复合加热丝等,也是加热“能手”。 “金属丝类材料具有高导电性、良好的电加热性能,且具有传感、电磁屏蔽等性能。以复合加热丝为例,其是在金属丝中添加了钼,既减少了金属的氧化,同时还可以提高金属电加热元件的耐用性。”夏兆鹏介绍道,将含有钼的金属丝,通过冷拉伸工艺变成微米级金属微丝,使其由金属丝转变为纤维。该纤维可以与聚酯纱线混纺制备成纱线,用其制作出的织物具有导电性。 相较普通导电织物,这种导电织物的柔性及舒适性都有所提升。“其柔性及形态与传统纤维及纱线十分接近,舒适性也得到提升。”夏兆鹏表示,不过,这类制衣材料仍然存在不耐长时间水洗、比较重等缺点。 人体红外反射材料: 人体热辐射反射率可达60% 红外热辐射是人体热量损失的另一种形式,传统纺织品的红外辐射率高、热量损失快,有研究指出棉花不可避免地会以中红外形式辐射出人体50%以上的热量。而人体红外反射材料则可以通过将人体发出的红外波反射回人体的方式减少红外热辐射损失,以达到保暖的效果。 “人体红外反射材料多数由金属颗粒构成,这些颗粒以一种微结构形式存在,将此材料附在织物上,便形成了红外波反射层。该反射层可以把人体辐射的大部分红外波都反射回来,从而达到保温效果。”夏兆鹏补充道。 “人体红外反射材料通常被用来制作冬装外衣的内衬,一般其人体热辐射反射率可以达到60%,提高服装防寒保暖效果比较明显。”夏兆鹏表示,不过,如果长时间处在超低温环境下,由于人体辐射的热量有限,因此该材料或无法达到理想的保暖效果。 聚四氟乙烯微孔膜: 低温环境下既透气又防水 冬季户外可能会出现下雨、降雪、霜冻等天气,通过高密防水层阻挡雨、雪、霜的侵入,可避免因衣物内层保暖材料被浸湿而导致保暖系数降低、保暖效率下降甚至失效。 “防水材料是在高密织物外面附上一层聚四氟乙烯微孔膜、水性聚氨酯膜或者聚氨酯膜。”夏兆鹏解释道,聚四氟乙烯微孔膜每平方厘米有十多亿个孔,在低温环境下,这些孔洞的开孔率可以达到80%。该孔的直径比水蒸气分子的直径大700倍,因此人体产生的汗蒸汽可以从中通过,从而保持衣服的透气性。聚四氟乙烯微孔膜上孔的直径比一般水的直径小很多倍,因此外面的液态水无法通过,从而达到了防水的目的。(科技日报 记者 陈 曦) 中国网客户端 国家重点新闻网站,9语种权威发布 |